
XML Overview, part 2
Norman Gray

Version 1.2, 2002/10/30

XML Overview, part 2 – p.1/26

Contents

Programming with XML

Namespaces and architectures

UR*

RDF

The future

XML Overview, part 2 – p.2/26

Programming with XML

Contents

Programming with XML
Parsers, languages and APIs
DOM
Programming with DOM
SAX [. . .]

Namespaces and architectures

UR*

RDF

The future

XML Overview, part 2 – p.3/26

Parsers, languages and APIs

There are numerous parsers, in Java, C, C++, Python,
Perl, . . .

See the Cover pages, xml.coverpages.org

DOM and SAX are the main interfaces to XML parsers

. . . but there are also other minimal ones

XSLT and XSL-FO are languages to transform and
format documents

XML Overview, part 2 – p.4/26

xml.coverpages.org

DOM

‘Document Object Model’ allows you to wander round
the tree

All in memory (in principle)

Allows arbitrarily complicated programmatic control
over the DOM

Doesn’t have to originate from an XML file! XML is not
about angle-brackets!

Java API: org.w3c.dom.*, supported in
javax.xml.*

Also dom4j from IBM, Xalan, . . .

XML Overview, part 2 – p.5/26

Programming with DOM

import org.w3c.dom.*;

import javax.xml.transform.*;

import javax.xml.transform.dom.DOMSource;

import javax.xml.transform.stream.StreamResult;

public class SimpleDom {

public static void main (String[] argv) throws Exception {

Document doc =

javax.xml.parsers.DocumentBuilderFactory.newInstance()

.newDocumentBuilder().newDocument();

Element el = doc.createElement("memo");

doc.appendChild(el);

Element kid = doc.createElement("from");

kid.setAttribute("email", "norman");

el.appendChild(kid);

Transformer trans = TransformerFactory.newInstance().newTransformer();

trans.transform(new DOMSource(doc),

new StreamResult(System.out));

}

}

XML Overview, part 2 – p.6/26

SAX

Event model

. . . so suitable for very large files

Most suitable, in general, for formatting/searching

. . . but not limited to that

www.saxproject.org

XML Overview, part 2 – p.7/26

www.saxproject.org

Programming with SAX

import org.xml.sax.XMLReader;

import org.xml.sax.helpers.DefaultHandler;

import org.xml.sax.helpers.XMLReaderFactory;

public class Poco extends DefaultHandler {

public static void main (String[] args) throws Exception {

XMLReader reader = XMLReaderFactory

.createXMLReader("org.apache.xerces.parsers.SAXParser");

Poco handler = new Poco();

reader.setContentHandler(handler);

reader.parse(args[0]);

}

public void startDocument() {

System.out.print("Arf!");

}

}

XML Overview, part 2 – p.8/26

XSLT

XSLT is the (main/standard) transformation language

Powerful, and usable, though it looks a bit wierd to
begin with

XSL-FO (‘XSL Formatting Objects’) is a styling
language; mostly for print

CSS isn’t dead yet

XML Overview, part 2 – p.9/26

Programming with XSLT, I

<?xml version="1.0"?>

<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:output method="html"/>

<xsl:template match="/">

<html>

<head>

<title>Memo from

<xsl:apply-templates select="memo/from"/>

</title>

</head>

<body>

<xsl:apply-templates/>

</body>

</html>

</xsl:template>

XML Overview, part 2 – p.10/26

Programming with XSLT, II

<xsl:template match="memo">

<p>From <xsl:apply-templates select="from"/></p>

<xsl:apply-templates select="p"/>

</xsl:template>

<xsl:template match="from">

<xsl:value-of select="@email"/>

</xsl:template>

<xsl:template match="p">

<p><xsl:apply-templates/></p>

</xsl:template>

</xsl:stylesheet>

XML Overview, part 2 – p.11/26

Programming with XSLT, III

Turns
<?xml version="1.0"?>

<memo>

<from email="norman@astro.gla.ac.uk"/>

<p>Hello, there</p>

<p>How are you?</p>

</memo>

into
<html>

<head>

<title>Memo from

norman@astro.gla.ac.uk</title>

</head>

<body>

<p>

From norman@astro.gla.ac.uk

</p>

<p>Hello, there</p>

<p>How are you?</p>

</body>

</html>

XML Overview, part 2 – p.12/26

XPath

General syntax for specifying parts of a DOM tree. Not in
XML syntax. Compact and powerful: regexp-ish.
/memo top level element
/memo/p all its (immediate) paragraph children
p all the paragraphs
/memo/p[2] the third paragraph child (count from zero)
from/@email from elements’ email attributes

XML Overview, part 2 – p.13/26

Infoset/DOM: abstract data structures

The Infoset is a definition of the collection of
information items that are available as the result of an
XML parse

For example, it says that information about the order of
elements is available, but the order of attributes isn’t

Really just a vocabulary for standards writers, however,
and isn’t directly/explicitly manipulated in any API.

The DOM isn’t just a way of getting at an XML parse:
you can view it as a perfectly general API for getting at
structured information

Standards like XPath, XQuery, XSLT operate on the
DOM/Infoset

An XML file is just one way of stocking a DOM

XML Overview, part 2 – p.14/26

Namespaces and architectures

Contents

Programming with XML

Namespaces and architectures
Namespaces
. . . as architectures
Interpellating

�

documents

UR*

RDF

The future

XML Overview, part 2 – p.15/26

Namespaces

Namespaces allow you to link element types to
‘owners’, and hence to syntax and semantics

A bit like DTDs, but without syntax checking

Named by URIs, which are opaque – not
dereferencable

Default namespace; but watch attributes

<myformat>

<mytitle>Pretty picture</mytitle>

<x:hdx xmlns:x=’http://www.starlink.ac.uk/HDX’>

<x:ndx x:uri="http://example.edu/myfile.fits" title="awww"/>

</x:hdx>

<html xmlns="http://www.w3.org/TR/REC-xhtml">

<head><title>HTML title</title></head>

<body><p></p></body>

</html>

</myformat>

XML Overview, part 2 – p.16/26

. . . as architectures

Like (old) architectures: ideal for ‘loose collaboration’
between originators of DTDs

Extract specialised ‘view’ of an XML document
<myformat

xmlns:n=’http://www.starlink.ac.uk/HDX’>

<link n:name=’data’>

http://example.edu/myfile.fits</link>

</myformat>

AF-NG

XML Overview, part 2 – p.17/26

Interpellating

�

documents

Can automatically extract ‘our’ syntax from the mess of
stuff we don’t know or care about

Namespace stuff can be hidden in DTD, to some extent

Simple but generic transformation

Lowers barriers to using our software

<myformat

xmlns:n=’http://www.starlink.ac.uk/HDX’>

<link n:name=’data’>

http://example.edu/myfile.fits</link>

</myformat>

to
<data uri="http://example.edu/myfile.fits"/>

�

look it up

XML Overview, part 2 – p.18/26

UR*

Contents

Programming with XML

Namespaces and architectures

UR*
URIs, URNs and URLs
URI vs. URL vs. URN

RDF

The future

XML Overview, part 2 – p.19/26

URIs, URNs and URLs

URL

http:...
ftp:... (purl)

URN

URI

fits:...

urn:...

XML Overview, part 2 – p.20/26

URI vs. URL vs. URN

URIs are general names for resources (RFC 2396)

URLs are URIs with location info

URNs are URIs with “an institutional commitment to
persistence”

. . . either RFC 2141 (urn:...), or PURLs
(http://purl.oclc.org/OCLC/PURL/INET96)

So (URI or URN) to URL needs resolver service

URIs are either ‘hierarchical’ or ‘non-hierarchical’;
former are slightly manipulable (‘up’, ‘relative’, etc,
requiring resolution), latter are opaque

Needn’t correspond to a single file

Fragments resolved at client

XML Overview, part 2 – p.21/26

http://purl.oclc.org/OCLC/PURL/INET96

RDF

Contents

Programming with XML

Namespaces and architectures

UR*

RDF
RDF for metadata
RDF illustrated
RDF data model

The future

XML Overview, part 2 – p.22/26

RDF for metadata

RDF is a framework for metadata

The Right Thing, even though there are few tools as yet

An RDF Schema is a vocabulary, or ontology

XML notation, ‘Notation 3’, others. . .

Hasn’t yet found much traction, though the user story
is very attractive

The Semantic Web will take over the world (maybe)

Should be easy to add post hoc

XML Overview, part 2 – p.23/26

RDF illustrated

XML Overview, part 2 – p.24/26

RDF data model

RDF data model: ‘resources have properties which are
resources’

More primitive than XML (a directed graph rather than
a tree)

. . . is distinct from, and independent of,
RDF-for-metadata: more generic idea, clarifying

XML Overview, part 2 – p.25/26

The future

Many more questions than answers

XML 1.1 has only minor changes – the fight about XML
2.0 hasn’t even started yet

Will XML get bigger or smaller?

Will XML Schemas take over the world?

DOM is a bit clunky: will it survive?

Will architectures take off?

Perhaps TAG holds the answers; as long as we acquire

XML-Fu we should remain in sympathy with changes

XML Overview, part 2 – p.26/26

	Contents
	Programming with XML
	Parsers, languages and APIs
	DOM
	Programming with DOM
	SAX
	Programming with SAX
	XSLT
	Programming with XSLT, I
	Programming with XSLT, II
	Programming with XSLT, III
	XPath
	Infoset/DOM: abstract data structures
	Namespaces and architectures
	Namespaces
	dots as architectures
	Interpellating* documents
	UR*
	URIs, URNs and URLs
	URI vs. URL vs. URN
	RDF
	RDF for metadata
	RDF illustrated
	RDF data model
	The future

